This paper extends the literature on the theoretical properties of synthetic controls to the case of non-linear generative models, showing that the synthetic control estimator is generally biased in such settings. I derive a lower bound for the bias, showing that the only component of it that is affected by the choice of synthetic control is the weighted sum of pairwise differences between the treated unit and the untreated units in the synthetic control. To address this bias, I propose a novel synthetic control estimator that allows for a constant difference of the synthetic control to the treated unit in the pre-treatment period, and that penalizes the pairwise discrepancies. Allowing for a constant offset makes the model more flexible, thus creating a larger set of potential synthetic controls, and the penalization term allows for the selection of the potential solution that will minimize bias. I study the properties of this estimator and propose a data-driven process for parameterizing the penalization term.
翻译:本文将合成控制理论属性的文献扩展至非线性基因模型,表明合成控制估计值一般在这些环境中有偏差。我得出了一个较低的偏差界限,表明受合成控制选择影响的唯一组成部分是经过处理的单位与未经处理的单位在合成控制中存在对称差异的加权和对称。为解决这一偏差,我提议了一个新的合成控制估计值,允许合成控制在预处理期间与经处理的单位在合成控制上始终存在差异,并惩罚对称差异。允许经常抵消使该模型更加灵活,从而创造出一套更大的可能的合成控制,而惩罚性术语允许选择尽可能减少偏差的潜在解决办法。我研究了这一估计值的特性,并提议了一个数据驱动程序,以作为惩罚术语的参数。