Existing studies on formation control for unmanned aerial vehicles (UAV) have not considered encircling targets where an optimum coverage of the target is required at all times. Such coverage plays a critical role in many real-world applications such as tracking hostile UAVs. This paper proposes a new path planning approach called the Flux Guided (FG) method, which generates collision-free trajectories for multiple UAVs while maximising the coverage of target(s). Our method enables UAVs to track directly toward a target whilst maintaining maximum coverage. Furthermore, multiple scattered targets can be tracked by scaling the formation during flight. FG is highly scalable since it only requires communication between sub-set of UAVs on the open boundary of the formation's surface. Experimental results further validate that FG generates UAV trajectories $1.5 \times$ shorter than previous work and that trajectory planning for 9 leader/follower UAVs to surround a target in two different scenarios only requires 0.52 seconds and 0.88 seconds, respectively. The resulting trajectories are suitable for robotic controls after time-optimal parameterisation; we demonstrate this using a 3d dynamic particle system that tracks the desired trajectories using a PID controller.


翻译:关于无人驾驶航空器(无人驾驶航空器)的编造控制的现有研究没有考虑到在任何时候都需要最佳目标覆盖的环绕目标。这种覆盖在许多现实应用中发挥着关键作用,例如跟踪敌对无人驾驶航空器。本文件提出一个新的路径规划方法,称为“FlUL 向导(FG)法”,为多个无人驾驶航空器生成无碰撞轨迹,同时最大限度地扩大目标的覆盖范围。我们的方法使无人驾驶航空器能够直接跟踪目标,同时保持最大覆盖范围。此外,通过在飞行期间扩大编造,可以跟踪多个分散的目标。FG非常可伸缩,因为它只需要在编造地表开放边界上的无人驾驶飞行器子集之间进行通信。实验结果进一步证实,FG生成UAV 轨迹比以往工作短1.5美元\time,9个领导/追随者UAV在两种不同情况下围绕目标的轨迹规划只需要0.52秒和0.88秒。由此产生的轨迹在时间-视点PID参数化后适合机器人控制。我们用3个动态粒子系统展示了这一轨道。

0
下载
关闭预览

相关内容

International Conference on Automatic Face and Gesture Recognition是研究基于图像和视频的人脸、手势和身体运动识别的首要国际论坛。其广泛的范围包括:计算机视觉、模式识别和计算机图形学的基础进展;与面部、手势和身体运动相关的机器学习技术;新的算法和应用。官网链接:http://fg2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月16日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
0+阅读 · 2022年7月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员