Reactive Turing machines extend classical Turing machines with a facility to model observable interactive behaviour. We call a behaviour (finitely) executable if, and only if, it is equivalent to the behaviour of a (finite) reactive Turing machine. In this paper, we study the relationship between executable behaviour and behaviour that can be specified in the $\pi$-calculus. We establish that every finitely executable behaviour can be specified in the $\pi$-calculus up to divergence-preserving branching bisimilarity. The converse, however, is not true due to (intended) limitations of the model of reactive Turing machines. That is, the $\pi$-calculus allows the specification of behaviour that is not finitely executable up to divergence-preserving branching bisimilarity. We shall prove, however, that if the finiteness requirement on reactive Turing machines and the associated notion of executability is relaxed to orbit-finiteness, then the $\pi$-calculus is executable up to (divergence-insensitive) branching bisimilarity.
翻译:振动性图灵机扩展古典图灵机,并配有模型可观察的互动行为。 我们称一种行为( 绝对) 可执行, 如果并且只有在它等同于( 无限) 活性图灵机的行为。 在本文中, 我们研究在$\ pi$- 计算仪中可以指定的可执行行为和行为之间的关系。 我们确定, 每种有限的可执行行为都可以在 $\ pi$- 计算仪中指定, 直至差异- 保存分支的相异性。 但是, 反之, 情况并非如此, 因为反应性图灵机模型的( int) 限制。 也就是说, $\ pi$- pi- calcululus 允许对行为进行限定性说明, 而不是在差异- 保留分支的相近性上进行限制性执行。 但是, 我们应证明, 如果对反应的图灵机的有限性要求和相关的可执行性概念可以放松到轨道定义, 那么 $\ pi- calules- culturings is 可执行性( tragnition- tragnition- travition) travition- travicity)。