Dot product kernels, such as polynomial and exponential (softmax) kernels, are among the most widely used kernels in machine learning, as they enable modeling the interactions between input features, which is crucial in applications like computer vision, natural language processing, and recommender systems. We make several novel contributions for improving the efficiency of random feature approximations for dot product kernels, to make these kernels more useful in large scale learning. First, we present a generalization of existing random feature approximations for polynomial kernels, such as Rademacher and Gaussian sketches and TensorSRHT, using complex-valued random features. We show empirically that the use of complex features can significantly reduce the variances of these approximations. Second, we provide a theoretical analysis for understanding the factors affecting the efficiency of various random feature approximations, by deriving closed-form expressions for their variances. These variance formulas elucidate conditions under which certain approximations (e.g., TensorSRHT) achieve lower variances than others (e.g., Rademacher sketches), and conditions under which the use of complex features leads to lower variances than real features. Third, by using these variance formulas, which can be evaluated in practice, we develop a data-driven optimization approach to improve random feature approximations for general dot product kernels, which is also applicable to the Gaussian kernel. We describe the improvements brought by these contributions with extensive experiments on a variety of tasks and datasets.


翻译:计算机视觉、自然语言处理和推荐系统等应用中至关重要的输入特性。 我们为改进圆点产品内核随机特性近似效率做出了一些新贡献,使这些内核在大规模学习中更有用。 首先,我们用复杂估价随机特性,例如Rademacher和Gaussian 草图和TensorSRHT等机器学习中最广泛使用的内核,以模拟输入特性之间的相互作用,这对于计算机视觉、自然语言处理和建议系统等应用至关重要。 其次,我们提供理论分析,以了解影响圆点产品内核随机特性近似效率的因素,通过对差异进行封闭式表达,使这些内核内核在大规模学习中更加有用。 这些差异公式澄清了某些多数值的随机变异性(例如,Tensor-SRT)在使用复杂价值随机变异性(例如,使用这些变异性模型,我们用这些变异性模型来评估这些变异性,这些变异性模型的变异性也比其他的变异性(例如,使用这些变异性模型的变异性模型),我们用这些变异性模型来评估这些变性特性来评估。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员