The popularity and hype around purchasing digital assets such as art, video, and music in the form of Non-fungible tokens (NFTs) has rapidly made them a lucrative investment opportunity, with NFT-based sales surpassing $25B in 2021 alone. However, the volatility and scarcity of NFTs, combined with the general lack of familiarity with the technical aspects of this ecosystem, encourage the spread of several scams. The success of an NFT is majorly impacted by its online virality. There have been sparse reports about scammers emulating this virality by either promoting their fraudulent NFT projects on social media or imitating other popular NFT projects. This paper presents a longitudinal analysis of 439 unique Twitter accounts that consistently promote fraudulent NFT collections through giveaway competitions and 1,028 NFT phishing attacks. Our findings indicate that most accounts interacting with these promotions are bots, which can rapidly increase the popularity of the fraudulent NFT collections by inflating their likes, followers, and retweet counts. This leads to significant engagement from real users, who then proceed to invest in the scams. On the other hand, we identify two novel attack vectors which are utilized by NFT phishing scams to steal funds and digital assets from the victim's wallet. We also identify several gaps in the prevalent anti-phishing ecosystem by evaluating the performance of popular anti-phishing blocklists and security tools against NFT phishing attacks. We utilize our findings to develop a machine learning classifier that can automatically detect NFT phishing scams at scale.


翻译:购买艺术、视频和音乐等数字资产(如艺术、视频和音乐)的受欢迎程度和杂乱无章,迅速使其成为一个有利可图的投资机会,光是2021年,NFT的销售额就超过25B美元。然而,NFT的波动性和稀缺性,加上普遍不熟悉这一生态系统的技术方面,鼓励了多种骗局的蔓延。NFT的成功受到其在线病毒性的主要影响。关于欺骗者模仿这种病毒的报告很少,要么在社交媒体上宣传其欺诈性NFT项目,要么模仿其他流行的NFT项目。本文对439个独特的Twitter账户进行了纵向分析,这些账户通过提供竞争和1 028 NFT的网络钓鱼袭击,不断促进欺诈性NFT收藏。我们的研究结果表明,大多数与这些推广活动互动的账户都是机器人,这可以通过粉饰其像、追随者以及Retweet 来迅速增加欺诈性NFT收藏的受欢迎程度。我们从真实用户那里学到大量接触,然后通过对正反面的NFT工具进行投资进行投资,我们利用了两处的货币变变的货币。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月16日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员