In information geometry, a strictly convex and smooth function induces a dually flat Hessian manifold equipped with a pair of dual Bregman divergences, hereby termed a Bregman manifold. Two common types of such Bregman manifolds met in statistics are (1) the exponential family manifolds induced by the cumulant functions of regular exponential families, and (2) the mixture family manifolds induced by the Shannon negentropies of statistical mixture families with prescribed linearly independent mixture components. However, the differential entropy of a mixture of continuous probability densities sharing the same support is hitherto not known in closed form making implementation of mixture family manifolds in practice difficult. In this work, we report an exception: The family of mixtures of two prescribed and distinct Cauchy distributions. We exemplify the explicit construction of a dually flat manifold induced by the differential negentropy for this very particular setting. This construction allows one to use the geometric toolbox of Bregman algorithms, and to obtain closed-form formula (albeit being large) for the Kullback-Leibler divergence and the Jensen-Shannon divergence between two mixtures of two prescribed Cauchy components.


翻译:在信息几何学中,一个严格的混凝土和光滑功能导致一个双平的黑森元件,配有双倍Bregman差异,此处称为Bregman元件。在统计中遇到的两种常见的Bregman元件是:(1) 正常指数家庭累积功能引发的指数式家庭元件,(2) 由具有线性独立混合成分的统计混合家庭的香农内源体引发的混合家庭元件。然而,一个连续概率密度的混合物的差别性酶,共用同样的支持,迄今尚未以封闭的形式为人们所知,使得混合家庭元件难以实际实施。我们在此工作中报告一个例外:两种指定且独特的宽度分布的混合物的组合。我们为这一非常特殊的环境举例说明了由差异性内分泌液引起的双平式组合。这一构造允许一种使用布雷格曼算法的几何工具箱,并获得库尔背利伯利弗尔差异和两个规定制的正向-Shan混合物之间的硬度差异的封闭式公式(尽管是大)。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月16日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员