We prove, for stably computably enumerable formal systems, direct analogues of the first and second incompleteness theorems of G\"odel. A typical stably computably enumerable set is the set of Diophantine equations with no integer solutions, and in particular such sets are generally not computably enumerable. And so this gives the first extension of the second incompleteness theorem to non classically computable formal systems. Let's motivate this with a somewhat physical application. Let $\mathcal{H} $ be the suitable infinite time limit (stabilization in the sense of the paper) of the mathematical output of humanity, specializing to first order sentences in the language of arithmetic (for simplicity), and understood as a formal system. Suppose that all the relevant physical processes in the formation of $\mathcal{H} $ are Turing computable. Then as defined $\mathcal{H} $ may \emph{not} be computably enumerable, but it is stably computably enumerable. Thus, the classical G\"odel disjunction applied to $\mathcal{H} $ is meaningless, but applying our second incompleteness theorem to $\mathcal{H} $ we then get a sharper version of G\"odel's disjunction: either $\mathcal{H} $ is not stably computably enumerable or $\mathcal{H} $ is not 1-consistent (in particular is not sound) or $\mathcal{H} $ cannot decide a certain true statement of arithmetic.
翻译:我们证明,对于精确的可量化的正规系统来说, 直接模拟G\'odel 的第一和第二个不完全的理论。 一个典型的可精确的可精确的可计算数字组是一套没有整数解决方案的异构方程式, 特别是这些组合一般无法进行可比较的量化。 这样, 第二个不完全的理论将第一个扩展至非典型的可比较的正式系统。 让我们用某种物理应用来激励它。 让 $\mathal{ h} 美元成为人类数学产出的适当无限时限( 纸张意义上的稳定性 ) 。 一个典型的可精确的无限时限( 纸意义上的稳定性 ) 。 一个典型的( 简单化), 并被理解为一个正式的系统。 假设在形成 $\ mathal=H} 美元时所有相关的物理进程都是可测量的。 然后, $\ mexphal{ h} 美元可能是可比较的, 但是它不是精确的可比较的 $: roma\\\\ dal a 美元。