Uncertainty in machine learning is not generally taught as general knowledge in Machine Learning course curricula. In this paper we propose a short curriculum for a course about uncertainty in machine learning, and complement the course with a selection of use cases, aimed to trigger discussion and let students play with the concepts of uncertainty in a programming setting. Our use cases cover the concept of output uncertainty, Bayesian neural networks and weight distributions, sources of uncertainty, and out of distribution detection. We expect that this curriculum and set of use cases motivates the community to adopt these important concepts into courses for safety in AI.
翻译:机械学习的不确定性一般不是作为一般知识在机器学习课程大纲中教授的机械学习的不确定性。在本文件中,我们建议为机器学习的不确定性课程设置短期课程,并以选择使用案例作为课程的补充,目的是激发讨论,让学生在编程环境中玩弄不确定性的概念。我们的使用案例包括产出不确定性的概念、贝耶斯神经网络和重量分布、不确定性的来源以及分配检测之外的情况。我们期望这些课程和使用案例能够激励社区将这些重要概念纳入AI的安全课程。