We introduce an impartial combinatorial game on Steiner triple systems called Nofil. Players move alternately, choosing points of the triple system. If a player is forced to fill a block on their turn, they lose. We explore the play of Nofil on all Steiner triple systems up to order 15 and a sampling for orders 19, 21, and 25. We determine the optimal strategies by computing the nim-values for each game and its subgames. The game Nofil can be thought of in terms of play on a corresponding hypergraph. As game play progresses, the hypergraph shrinks and will eventually be equivalent to playing the game Node Kayles on an isomorphic graph. Node Kayles is well studied and understood. Motivated by this, we study which Node Kayles positions can be reached, i.e. embedded into a Steiner triple system. We prove necessary conditions and sufficient conditions for the existence of such graph embeddings and conclude that the complexity of determining the outcome of the game Nofil on Steiner triple systems is PSPACE-complete.
翻译:我们在施泰纳三重系统上引入了公正的组合游戏,称为 Nofil 。 玩家们轮流移动, 选择三重系统的各个点。 如果玩家们被迫在他们身边填满一块块, 他们输了。 我们探索了所有施泰纳三重系统中的Nufil游戏, 直至15号订单, 以及19、 21和25号订单的抽样。 我们通过计算每个游戏及其子游戏的最小值来确定最佳策略。 游戏 Nofil可以在相应的高分系统中进行游戏的游戏。 随着游戏的进展, 高压缩体最终将等同于在无形态的图表上玩Nde Kayles游戏。 Node Kayles是很好地研究和理解的。 因此, 我们研究Node Kayles的位置, 嵌入了施泰纳三重系统。 我们证明存在这种图表嵌入系统的必要条件和充分条件。 我们的结论是, 确定施泰纳三重系统诺菲游戏结果的复杂性是PACE- 完成 。