For the past few years, we used Apache Lucene as recommendation frame-work in our scholarly-literature recommender system of the reference-management software Docear. In this paper, we share three lessons learned from our work with Lucene. First, recommendations with relevance scores below 0.025 tend to have significantly lower click-through rates than recommendations with relevance scores above 0.025. Second, by picking ten recommendations randomly from Lucene's top50 search results, click-through rate decreased by 15%, compared to recommending the top10 results. Third, the number of returned search results tend to predict how high click-through rates will be: when Lucene returns less than 1,000 search results, click-through rates tend to be around half as high as if 1,000+ results are returned.


翻译:在过去几年里,我们用阿帕奇·卢塞内作为参考管理软件Docear的学术-文学推荐系统的建议框架。在本文中,我们分享了与卢塞内合作的三项经验教训。首先,相关评分低于0.025的建议的点击率大大低于相关评分高于0.025的建议。第二,通过随机从卢塞恩的顶部50次搜索结果中挑选十项建议,点击通率比建议顶部10次结果减少了15%。第三,返回的搜索结果数往往预测点击率会有多高:当卢塞内返回不到1,000次搜索结果时,点击通率往往比返回1,000+的结果高出一半左右。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
92+阅读 · 2020年2月28日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
6+阅读 · 2018年5月18日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
9+阅读 · 2018年3月23日
VIP会员
相关资讯
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关论文
Top
微信扫码咨询专知VIP会员