As an active network security protection scheme, intrusion detection system (IDS) undertakes the important responsibility of detecting network attacks in the form of malicious network traffic. Intrusion detection technology is an important part of IDS. At present, many scholars have carried out extensive research on intrusion detection technology. However, developing an efficient intrusion detection method for massive network traffic data is still difficult. Since Generative Adversarial Networks (GANs) have powerful modeling capabilities for complex high-dimensional data, they provide new ideas for addressing this problem. In this paper, we put forward an EBGAN-based intrusion detection method, IDS-EBGAN, that classifies network records as normal traffic or malicious traffic. The generator in IDS-EBGAN is responsible for converting the original malicious network traffic in the training set into adversarial malicious examples. This is because we want to use adversarial learning to improve the ability of discriminator to detect malicious traffic. At the same time, the discriminator adopts Autoencoder model. During testing, IDS-EBGAN uses reconstruction error of discriminator to classify traffic records.
翻译:作为积极的网络安全保护计划,入侵探测系统(IDS)承担了以恶意网络交通形式探测网络袭击的重要责任,入侵探测技术是IDS的重要组成部分,目前,许多学者对入侵探测技术进行了广泛的研究,然而,为大规模网络交通数据开发高效入侵探测方法仍很困难,由于生成反向网络(GANs)对于复杂的高维数据具有强大的建模能力,因此它们为解决这一问题提供了新的想法。在本文件中,我们提出了一个基于EBGAN的入侵探测方法(IDS-EBGAN),将网络记录归类为正常交通或恶意交通。IDS-EBGAN的生成者负责将培训中最初的恶意网络交通转换为对抗性的恶意案例。这是因为我们想利用对抗性学习来提高歧视者检测恶意交通的能力。与此同时,歧视者采用了Autencoder模型。在测试中,IDS-EBGAN利用歧视者重建错误来对交通记录进行分类。