Mid-circuit measurement (MCM) provides the capability for qubit reuse and dynamic control in quantum processors, enabling more resource-efficient algorithms and supporting error-correction procedures. However, MCM introduces several sources of error, including measurement-induced crosstalk, idling-qubit decoherence, and reset infidelity, and these errors exhibit pronounced qubit-dependent variability within a single device. Since existing compilers such as the Qiskit-compiler and QR-Map (the state-of-art qubit reuse compiler) do not account for this variability, circuits with frequent MCM operations often experience substantial fidelity loss. In thie paper, we propose MERA, a compilation framework that performs MCM-error-aware layout, routing, and scheduling. MERA leverages lightweight profiling to obtain a stable per-qubit MCM error distribution, which it uses to guide error-aware qubit mapping and SWAP insertions. To further mitigate MCM-related decoherence and crosstalk, MERA augments as-late-as-possible scheduling with context-aware dynamic decoupling. Evaluated on 27 benchmark circuits, MERA achieves 24.94% -- 52.00% fidelity improvement over the Qiskit compiler (optimization level 3) without introducing additional overhead. On QR-Map-generated circuits, it improves fidelity by 29.26% on average and up to 122.58% in the best case, demonstrating its effectiveness for dynamic circuits dominated by MCM operations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

编译器(Compiler),是一种计算机程序,它会将用某种编程语言写成的源代码(原始语言),转换成另一种编程语言(目标语言)。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员