Bugs, misconfiguration, and malware can cause ballot-marking devices (BMDs) to print incorrect votes. Several approaches to testing BMDs have been proposed. In logic and accuracy testing (LAT) and parallel or live testing, auditors input known test patterns into the BMD and check whether the printout matches. Passive testing monitors the rate at which voters ``spoil'' BMD printout, on the theory that if BMDs malfunction, the rate will increase. We provide theoretical lower bounds that show that in practice, these approaches cannot reliably detect outcome-altering problems. The bounds are large because: (i) The number of possible voter interactions with BMDs is enormous, so testing interactions uniformly at random is hopeless. (ii) To probe the space of interactions intelligently requires an accurate model of voter behavior, but because the space of interactions is so large, building that model requires observing an enormous number of voters in every jurisdiction in every election -- more voters than there are in most U.S. jurisdictions. (iii) Even with a perfect model of voter behavior, the required number of tests exceeds the number of voters in most U.S. jurisdictions. (iv) The distribution of spoiled ballots, whether BMDs misbehave or not, is unknown and varies by election and presumably by ballot style: historical data are of limited use. Hence, there is no way to calibrate a threshold for passive testing, e.g., to guarantee at least a 95% chance of noticing that 5% of the votes were altered, with at most a 5% false alarm rate. (v) Even if the distribution of spoiled ballots were known to be Poisson, the vast majority of jurisdictions to not have enough voters for passive testing to have a large chance of detecting problems while maintaining a small chance of false alarms.


翻译:错误、 错误配置和恶意软件可能导致选票标记装置( BMDs) 打印错误的选票。 已经提出了几种测试 BMD 的方法。 在逻辑和准确度测试( LAT) 以及平行或现场测试中, 审计员将已知的测试模式输入 BMD 中, 并检查打印匹配。 被动测试监测了选民“ spoil” BMD 打印出的速度。 被动测试监测了“ spoil' BMD ” 打印出的速度, 其理论是, 如果BMDs出错, 比率将会上升。 我们提供的理论下限显示, 这些方法在实际中无法可靠地检测结果改变的问题。 界限很大的原因是:(一) 可能与 BMDDs 的选民互动数量非常庞大, 因此, 随机的测试空间需要准确的选民行为模式, 但是由于互动空间如此之大, 在每个选区的选民选区中, 需要观察一个庞大的选民数量, —— 与多数的选民相比, 。 (三) 即使选民的概率是有限的模式, 在选民行为模式中, 最差的投票的测试中, 也是最差的 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员