Repeated longitudinal measurements are commonly used to model long-term disease progression, and timing and number of assessments per patient may vary, leading to irregularly spaced and sparse data. Longitudinal trajectories may exhibit curvilinear patterns, in which mixed linear regression methods may fail to capture true trends in the data. We applied functional principal components analysis to model kidney disease progression via estimated glomerular filtration rate (eGFR) trajectories. In a cohort of 2641 participants with diabetes and up to 15 years of annual follow-up from the Chronic Renal Insufficiency Cohort (CRIC) study, we detected novel dominant modes of variation and patterns of diabetic kidney disease (DKD) progression among subgroups defined by the presence of albuminuria. We conducted inferential permutation tests to assess differences in longitudinal eGFR patterns between groups. To determine whether fitting a full cohort model or separate group-specific models is more optimal for modeling long-term trajectories, we evaluated model fit, using our goodness-of-fit procedure, and future prediction accuracy. Our findings indicated advantages for both modeling approaches in accomplishing different objectives. Beyond DKD, the methods described are applicable to other settings with longitudinally assessed biomarkers as indicators of disease progression. Supplementary materials for this article are available online.
翻译:常用反复的纵向测量方法来模拟长期病情的演变,每个病人的评估时间和次数可能各不相同,导致数据不定期间隔和稀少; 纵向轨迹可能呈现曲线模式,其中混合线性回归方法可能无法捕捉数据的真实趋势; 我们运用功能性主要组成部分分析,通过估计球状过滤率(eGFR)对肾病的演变进行模型; 在有糖尿病的2 641名参与者中,以及长期肾脏不全(CRIC)研究的长达15年的年度后续跟踪中,我们发现了新颖的主要变异模式和糖尿病肾脏病(DKD)的演变模式; 我们进行了推断性变异测试,以评估各群体之间长期肾脏过滤率(eGFR)模式的差异; 为了确定是否适合全组模式或单独的群体模式更适合模拟长期跟踪,我们利用我们完善的程序对模型进行了长达15年的年度后续跟踪,我们发现了新颖的糖尿病肾脏病变模式模式和模式的准确性预测模式; 我们的研究结果表明,在生物进化模式方面,现有模型的优势是超越了现有指标。