Finding optimal configurations in a geometric space is a key challenge in many technological disciplines. Current approaches either rely heavily on human domain expertise and are difficult to scale. In this paper we show it is possible to solve configuration optimization problems for whole-page recommendation using reinforcement learning. The proposed \textit{Tile Networks} is a neural architecture that optimizes 2D geometric configurations by arranging items on proper positions. Empirical results on real dataset demonstrate its superior performance compared to traditional learning to rank approaches and recent deep models.
翻译:在几何空间寻找最佳配置在许多技术学科中是一项关键挑战。 目前的方法要么严重依赖人类领域的专门知识,而且难以推广。 在本文中,我们展示了使用强化学习解决整页建议配置优化问题的可能性。 提议的\ textit{ Tile Networks} 是一个神经结构,它通过在正确位置上安排项目来优化 2D 几何配置。 真实数据集的经验性结果表明,与传统学习相比,它的业绩优于等级方法和最近的深层模型。</s>