The Shortest Path Problem, in real-life applications, has to deal with multiple criteria. Finding all Pareto-optimal solutions for the multi-criteria single-source single-destination shortest path problem with non-negative edge lengths might yield a solution with the exponential number of paths. In the first part of this paper, we study specific settings of the multi-criteria shortest path problem, which are based on prioritized multi-criteria and on $k$-shortest paths. In the second part, we show a polynomial-time algorithm that, given an undirected graph $G$ and a pair of vertices $(s,t)$, finds prioritized multi-criteria 2-disjoint (vertex/edge) shortest paths between $s$ and $t$. In the third part of the paper, we introduce the $k$-disjoint all-criteria-shortest paths problem, which is solved in time $O(min(k|E|, |E|^{3/2}))$.
翻译:在实际应用中,最短的路径问题需要处理多种标准。 找到所有Pareto- 最佳的多标准单一源单一目的地最短路径问题解决方案, 找到非负边缘长度最短路径问题解决方案, 可能会产生指数数路径的解决方案 。 在本文第一部分, 我们研究多标准最短路径问题的具体环境, 其基础是优先的多标准多标准路径和以美元为最差路径。 在第二部分, 我们展示了一种多元时间算法, 以非直接的图表$G$和一对顶脊椎( 美元, t) 为基础, 找到优先的多标准2- 垂直( 逆向/ 顶端) 最短路径在美元和美元之间。 在本文第三部分, 我们引入了以美元为基础的所有标准最短路径脱节问题, 这个问题在时间 $O( min( k ⁇, ⁇ E) 和 ⁇ E ⁇ 3/2 } ) 解决 。