This paper proposes a deep learning based power allocation (DL-PA) and hybrid precoding technique for multiuser massive multiple-input multiple-output (MU-mMIMO) systems. We first utilize an angular-based hybrid precoding technique for reducing the number of RF chains and channel estimation overhead. Then, we develop the DL-PA algorithm via a fully-connected deep neural network (DNN). DL-PA has two phases: (i) offline supervised learning with the optimal allocated powers obtained by particle swarm optimization based PA (PSO-PA) algorithm, (ii) online power prediction by the trained DNN. In comparison to the computationally expensive PSO-PA, it is shown that DL-PA greatly reduces the runtime by 98.6%-99.9%, while closely achieving the optimal sum-rate capacity. It makes DL-PA a promising algorithm for the real-time online applications in MU-mMIMO systems.
翻译:本文建议对多用户大规模多投入多产出(MU-MMIMO)系统采用基于深层次学习的动力分配(DL-PA)和混合预编码技术。我们首先使用基于角的混合预编码技术来减少RF链的数量和输送估计间接费用。然后,我们通过完全连接的深层神经网络(DNN)开发DL-PA算法。DL-PA有两个阶段:(一) 利用基于粒子群集优化PA算法(PSO-PA)获得的最佳分配能力进行离线监督学习;(二) 由受过训练的DNNN进行在线功率预测。与计算昂贵的PSO-PA相比,显示DL-PA大大缩短运行时间98.6%-99.9%,同时接近最佳总和率能力。DL-PA是MIMO系统中实时在线应用的有希望的算法。