Membership Inference Attacks (MIAs) infer whether a data point is in the training data of a machine learning model. It is a threat while being in the training data is private information of a data point. MIA correctly infers some data points as members or non-members of the training data. Intuitively, data points that MIA accurately detects are vulnerable. Considering those data points may exist in different target models susceptible to multiple MIAs, the vulnerability of data points under multiple MIAs and target models is worth exploring. This paper defines new metrics that can reflect the actual situation of data points' vulnerability and capture vulnerable data points under multiple MIAs and target models. From the analysis, MIA has an inference tendency to some data points despite a low overall inference performance. Additionally, we implement 54 MIAs, whose average attack accuracy ranges from 0.5 to 0.9, to support our analysis with our scalable and flexible platform, Membership Inference Attacks Platform (VMIAP). Furthermore, previous methods are unsuitable for finding vulnerable data points under multiple MIAs and different target models. Finally, we observe that the vulnerability is not characteristic of the data point but related to the MIA and target model.
翻译:成员攻击(MIAs) 推论一个数据点是否在机器学习模型的培训数据中,这是一个威胁,而培训数据则是数据点的私人信息。MIA正确地推断了一些数据点是培训数据的成员或非成员。自然,MIA准确检测到的数据点是脆弱的。考虑到这些数据点可能存在于多个MIAs不同的目标模型中,多个MIAs和目标模型下的数据点的脆弱性值得探索。本文界定了能够反映数据点脆弱性的实际状况并在多个MIAs和目标模型下捕捉脆弱数据点的新指标。从分析中,MIA对某些数据点有推论倾向,尽管总体推论性表现较低。此外,我们实施了54个MIAs,其平均攻击准确度介于0.5至0.9之间,以支持我们用我们可测量和灵活的平台,即成员推断攻击平台(VMIAP)进行的分析。此外,以前的方法不适合在多个MIA和不同目标模型下找到脆弱数据点。我们发现,该脆弱性不是数据点的特征,而是与数据目标点有关。