Tile Automata is a recently defined model of self-assembly that borrows many concepts from cellular automata to create active self-assembling systems where changes may be occurring within an assembly without requiring attachment. This model has been shown to be powerful, but many fundamental questions have yet to be explored. Here, we study the state complexity of assembling $n \times n$ squares in seeded Tile Automata systems where growth starts from a seed and tiles may attach one at a time, similar to the abstract Tile Assembly Model. We provide optimal bounds for three classes of seeded Tile Automata systems (all without detachment), which vary in the amount of complexity allowed in the transition rules. We show that, in general, seeded Tile Automata systems require $\Theta{(\log^{\frac{1}{4}} n)}$ states. For single-transition systems, where only one state may change in a transition rule, we show a bound of $\Theta{(\log^{\frac{1}{3}} n)}$, and for deterministic systems, where each pair of states may only have one associated transition rule, a bound of $\Theta( (\frac{\log n}{\log \log n})^\frac{1}{2} )$.
翻译:Tile Automata 是一种最近定义的自我组装模式, 它从蜂窝自动组装中借用了许多概念, 以创建活跃的自组装系统, 这些系统在组件中可能会发生变化而无需附加附件。 这个模式已被证明是强大的, 但许多根本问题还有待探讨 。 在这里, 我们研究在种子的Tile Automata 系统中组装 $\ times n 方块的状态复杂性, 种子和瓷砖的生长可以同时附加一个, 类似于抽象的 Tile 组装模式 。 我们为三种种子自动组装系统( 全部没有隔离) 提供了最佳的界限, 三个种子组装系统( 种子组装的自动组装系统) 在过渡规则允许的复杂程度上各不相同 。 我们显示, 一般来说, 种子自动组装的自动组装系统需要$\theta{ ( log\\ fraferc) { 1\\\\\\\\\\\\\\\\\\\\ n} granc\ reformac) 规则。 对于单一过渡规则, 每个州可能只有一个组合规则。