Construction spaces are constantly evolving, dynamic environments in need of continuous surveying, inspection, and assessment. Traditional manual inspection of such spaces proves to be an arduous and time-consuming activity. Automation using robotic agents can be an effective solution. Robots, with perception capabilities can autonomously classify and survey indoor construction spaces. In this paper, we present a novel identification-on-the-fly approach for coarse classification of indoor spaces using the unique signature of clutter. Using the context granted by clutter, we recognize common indoor spaces such as corridors, staircases, shared spaces, and restrooms. The proposed clutter slices pipeline achieves a maximum accuracy of 93.6% on the presented clutter slices dataset. This sensor independent approach can be generalized to various domains to equip intelligent autonomous agents in better perceiving their environment.
翻译:建筑空间不断变化,充满活力,需要不断测量、检查和评估。传统的人工检查这些空间证明是一项艰苦和耗时的活动。使用机器人剂的自动化可以是一个有效的解决方案。具有感知能力的机器人可以自主分类和调查室内建筑空间。在本文中,我们展示了使用杂交的独特标志对室内空间进行粗略分类的新颖的实时识别方法。我们利用杂交提供的环境,承认共同的室内空间,如走廊、楼梯、共用空间和洗手间。拟议的结晶切片管道在展示的结晶切片数据集上达到93.6%的最大精确度。这种感应独立的方法可以推广到各个领域,以装备智能自主剂,更好地了解其环境。