4D radar is recognized for its resilience and cost-effectiveness under adverse weather conditions, thus playing a pivotal role in autonomous driving. While cameras and LiDAR are typically the primary sensors used in perception modules for autonomous vehicles, radar serves as a valuable supplementary sensor. Unlike LiDAR and cameras, radar remains unimpaired by harsh weather conditions, thereby offering a dependable alternative in challenging environments. Developing radar-based 3D object detection not only augments the competency of autonomous vehicles but also provides economic benefits. In response, we propose the Multi-View Feature Assisted Network (\textit{MVFAN}), an end-to-end, anchor-free, and single-stage framework for 4D-radar-based 3D object detection for autonomous vehicles. We tackle the issue of insufficient feature utilization by introducing a novel Position Map Generation module to enhance feature learning by reweighing foreground and background points, and their features, considering the irregular distribution of radar point clouds. Additionally, we propose a pioneering backbone, the Radar Feature Assisted backbone, explicitly crafted to fully exploit the valuable Doppler velocity and reflectivity data provided by the 4D radar sensor. Comprehensive experiments and ablation studies carried out on Astyx and VoD datasets attest to the efficacy of our framework. The incorporation of Doppler velocity and RCS reflectivity dramatically improves the detection performance for small moving objects such as pedestrians and cyclists. Consequently, our approach culminates in a highly optimized 4D-radar-based 3D object detection capability for autonomous driving systems, setting a new standard in the field.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员