Temporal graphs represent the dynamic relationships among entities and occur in many real life application like social networks, e commerce, communication, road networks, biological systems, and many more. They necessitate research beyond the work related to static graphs in terms of their generative modeling and representation learning. In this survey, we comprehensively review the neural time dependent graph representation learning and generative modeling approaches proposed in recent times for handling temporal graphs. Finally, we identify the weaknesses of existing approaches and discuss the research proposal of our recently published paper TIGGER[24].
翻译:时间图代表各实体之间的动态关系,并出现在社会网络、电子商业、通信、公路网络、生物系统等许多实际生活中的应用中。它们要求从基因建模和代表性学习的角度对静态图的相关工作进行更多的研究。在这次调查中,我们全面审查了近期为处理时间图而提出的神经时间依赖图说明学习和基因化模型方法。最后,我们查明了现有方法的弱点,并讨论了我们最近发表的论文TIGGER[24]的研究建议。