One of the first and easy to use techniques for proving run time bounds for evolutionary algorithms is the so-called method of fitness levels by Wegener. It uses a partition of the search space into a sequence of levels which are traversed by the algorithm in increasing order, possibly skipping levels. An easy, but often strong upper bound for the run time can then be derived by adding the reciprocals of the probabilities to leave the levels (or upper bounds for these). Unfortunately, a similarly effective method for proving lower bounds has not yet been established. The strongest such method, proposed by Sudholt (2013), requires a careful choice of the viscosity parameters $\gamma_{i,j}$, $0 \le i < j \le n$. In this paper we present two new variants of the method, one for upper and one for lower bounds. Besides the level leaving probabilities, they only rely on the probabilities that levels are visited at all. We show that these can be computed or estimated without greater difficulties and apply our method to reprove the following known results in an easy and natural way. (i) The precise run time of the (1+1) EA on \textsc{LeadingOnes}. (ii) A lower bound for the run time of the (1+1) EA on \textsc{OneMax}, tight apart from an $O(n)$ term. (iii) A lower bound for the run time of the (1+1) EA on long $k$-paths. We also prove a tighter lower bound for the run time of the (1+1) EA on jump functions by showing that, regardless of the jump size, only with probability $O(2^{-n})$ the algorithm can avoid to jump over the valley of low fitness.
翻译:用于证明进化算法运行时间限制的第一个且容易使用的技术之一 。 不幸的是, 证明低限的类似有效方法尚未建立。 Sudholt(2013) 提议的最强的这种方法需要谨慎选择较低的粘度参数 $\ gamma_i, j}$, $\le i < j\le n$。 在本文中, 我们提出两种新的方法变量, 一种是高的, 一种是低限的。 除了水平的概率外, 它们只依赖于级别仅访问的概率。 我们表明, 这些数据可以在没有更大困难的情况下计算或估算。 由Sudholt(2013) 提议的最强的方法需要谨慎选择较低的粘度参数 $\ gamma_i, j} $, $0\le i < j\ l\ le n$。 。 在本文中,我们提出方法的两种新变量, 一个是高值, 一个是高值, 一个是低限的。 除了水平外, 它们只取决于级别仅访问的概率。 我们表明, 可以在没有更大难度的情况下进行计算或估计这些方法, 以更低的 美元 递增的 美元 时间 。 (在 EA 的 的 节值上运行中, 一个更短时间 运行 。 ( ) a) a 和直的 递增 递增 的 。