We present an approach to solving problems in micromechanics that is amenable to massively parallel calculations through the use of graphical processing units and other accelerators. The problems lead to nonlinear differential equations that are typically second order in space and first order in time. This combination of nonlinearity and nonlocality makes such problems difficult to solve in parallel. However, this combination is a result of collapsing nonlocal, but linear and universal physical laws (kinematic compatibility, balance laws), and nonlinear but local constitutive relations. We propose an operator-splitting scheme inspired by this structure. The governing equations are formulated as (incremental) variational problems, the differential constraints like compatibility are introduced using an augmented Lagrangian, and the resulting incremental variational principle is solved by the alternating direction method of multipliers. The resulting algorithm has a natural connection to physical principles, and also enables massively parallel implementation on structured grids. We present this method and use it to study two examples. The first concerns the long wavelength instability of finite elasticity, and allows us to verify the approach against previous numerical simulations. We also use this example to study convergence and parallel performance. The second example concerns microstructure evolution in liquid crystal elastomers and provides new insights into some counter-intuitive properties of these materials. We use this example to validate the model and the approach against experimental observations.
翻译:我们提出一种方法来解决微型机械学方面的问题,这种方法可以通过使用图形处理器和其他加速器进行大规模平行计算。问题导致非线性差异方程式,通常在空间中处于第二顺序,在时间上处于第一顺序。这种非线性和非地性结合使得这些问题难以平行解决。然而,这种结合是非本地但线性和普遍性物理法(皮肤兼容性、平衡法)以及非线性但地方性但非线性构成关系崩溃的结果。我们提出一种由这一结构启发的操作者分裂办法。管理方程式是(分级的)变异问题,兼容性等差异性限制是使用扩增的拉格朗基亚式提出的,由此产生的递增变异性原则则通过乘数交替方向方法加以解决。由此产生的算法与物理原理有着自然的联系,也使得在结构化电网中可以大规模平行地执行。我们提出这种方法,并用它来研究两个范例。首先涉及新弹性弹性的波长性波动性不稳定性,并允许我们对照先前的数值模拟性观测方法进行(分辨)变异性分析。我们用这种平行性模型来研究这些微级结构的实验性实验性研究。我们用这种实验性实验性研究。我们用这种实验性实验性实验性实验性研究了这种实验性研究。我们用这种实验性实验性研究了这些实验性实验性实验性研究了一些性研究。