The goal of transfer learning (TL) is providing a framework for exploiting acquired knowledge from source to target data. Transfer learning approaches compared to traditional machine learning approaches are capable of modeling better data patterns from the current domain. However, vanilla TL needs performance improvements by using computational intelligence-based TL. This paper studies computational intelligence-based transfer learning techniques and categorizes them into neural network-based, evolutionary algorithm-based, swarm intelligence-based and fuzzy logic-based transfer learning.
翻译:转让学习(TL)的目标是提供一个框架,从来源到目标数据利用获得的知识; 与传统机器学习方法相比,转让学习方法能够从目前领域建立更好的数据模式; 然而,香草TL需要通过使用基于计算情报的TL改进业绩。 本文研究基于情报的计算转让学习技术,并将其分类为基于神经网络的、基于演化算法的、基于温暖情报的和模糊的逻辑的转移学习。