Perception and localization are essential for autonomous delivery vehicles, mostly estimated from 3D LiDAR sensors due to their precise distance measurement capability. This paper presents a strategy to obtain the real-time pseudo point cloud instead of the laser sensor from the image sensor. We propose an approach to use different depth estimators to obtain pseudo point clouds like LiDAR to obtain better performance. Moreover, the training and validating strategy of the depth estimator has adopted stereo imagery data to estimate more accurate depth estimation as well as point cloud results. Our approach to generating depth maps outperforms on KITTI benchmark while yielding point clouds significantly faster than other approaches.
翻译:感知和定位对于自动运载工具至关重要,大部分来自3D LiDAR传感器,这是由于其精确的距离测量能力而估算出来的。本文提出了获取实时假点云而不是图像传感器激光传感器的战略。我们提出了使用不同深度测算器获取像LIDAR这样的假点云的方法,以取得更好的性能。此外,深度测算器的培训和验证策略采用了立体图像数据来估计更准确的深度估计和点云结果。我们绘制深度地图的方法比KITTI基准要好,而生成点云的速度比其他方法要快得多。