Free energy reconstruction methods such as Gaussian Process Regression (GPR) require Jacobians of the collective variables (CVs), a bottleneck that restricts the use of complex or machine-learned CVs. We introduce a neural network surrogate framework that learns CVs directly from Cartesian coordinates and uses automatic differentiation to provide Jacobians, bypassing analytical forms. On an MgCl2 ion-pairing system, our method achieved high accuracy for both a simple distance CV and a complex coordination-number CV. Moreover, Jacobian errors also followed a near-Gaussian distribution, making them suitable for GPR pipelines. This framework enables gradient-based free energy methods to incorporate complex and machine-learned CVs, broadening the scope of biochemistry and materials simulations.
翻译:诸如高斯过程回归(GPR)等自由能重构方法需要集体变量(CVs)的雅可比矩阵,这一瓶颈限制了复杂或机器学习CVs的使用。我们引入了一种神经网络代理框架,该框架直接从笛卡尔坐标学习CVs,并利用自动微分提供雅可比矩阵,从而绕过了解析形式。在MgCl2离子配对系统中,我们的方法对于简单的距离CV和复杂的配位数CV均实现了高精度。此外,雅可比矩阵误差也遵循近似高斯分布,使其适用于GPR流程。该框架使得基于梯度的自由能方法能够整合复杂及机器学习的CVs,从而拓宽了生物化学和材料模拟的应用范围。