This paper focuses on investigating the learning operators for identifying weak solutions to the Navier-Stokes equations. Our objective is to establish a connection between the initial data as input and the weak solution as output. To achieve this, we employ a combination of deep learning methods and compactness argument to derive learning operators for weak solutions for any large initial data in 2D, and for low-dimensional initial data in 3D. Additionally, we utilize the universal approximation theorem to derive a lower bound on the number of sensors required to achieve accurate identification of weak solutions to the Navier-Stokes equations. Our results demonstrate the potential of using deep learning techniques to address challenges in the study of fluid mechanics, particularly in identifying weak solutions to the Navier-Stokes equations.
翻译:暂无翻译