It is an important management task of metro agencies to formulate reasonable improvement schemes based on the result of service quality surveys. Considering scores, weights, and improvement feasibility of service quality attributes in a certain period, this paper integrates Decision Tree (DT) into Importance-Performance analysis (IPA) to build a DT-IPA model, which is used to determine the improvement priority of attributes, and to quantify the improvement degree. If-then rules extracted from the optimal decision tree and the improvement feasibility computed by analytic hierarchy process are two main items derived from the DT-IPA model. They are used to optimize the initial improvement priority of attributes determined by IPA and to quantify the degree of improvement of the adjusted attributes. Then, the overall service quality can reach a high score, realizing the operation goal. The effectiveness of the DT-IPA model was verified through an empirical study which was taken place in Changsha Metro, China. The proposed method can be a decision-making tool for metro agency managers to improve the quality of metro service.


翻译:根据服务质量调查结果制定合理的改进计划,是地铁机构的一项重要管理任务。考虑到评分、权重和在一定时期内提高服务质量属性的可行性,本文件将决策树(DT)纳入重要性业绩分析,以建立DT-IPA模式,用于确定属性的改进优先程度,并量化改进程度。从最佳决策树中提取的规则和通过分析分级程序计算的改进可行性是来自DT-IPA模式的两个主要项目,用于优化IPA确定属性的初步改进优先事项,并量化调整后的属性的改进程度。然后,总体服务质量可以达到很高的得分,实现业务目标。DT-IPA模式的有效性通过在中国昌沙大都会进行的经验性研究得到验证。拟议方法可以成为地铁机构管理人员提高地铁服务质量的决策工具。

0
下载
关闭预览

相关内容

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月16日
Arxiv
0+阅读 · 2021年9月15日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
少标签数据学习,54页ppt
专知会员服务
196+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员