We present the design, development, and evaluation of HREyes: biomimetic communication devices which use light to communicate information and, for the first time, gaze direction from AUVs to humans. First, we introduce two types of information displays using the HREye devices: active lucemes and ocular lucemes. Active lucemes communicate information explicitly through animations, while ocular lucemes communicate gaze direction implicitly by mimicking human eyes. We present a human study in which our system is compared to the use of an embedded digital display that explicitly communicates information to a diver by displaying text. Our results demonstrate accurate recognition of active lucemes for trained interactants, limited intuitive understanding of these lucemes for untrained interactants, and relatively accurate perception of gaze direction for all interactants. The results on active luceme recognition demonstrate more accurate recognition than previous light-based communication systems for AUVs (albeit with different phrase sets). Additionally, the ocular lucemes we introduce in this work represent the first method for communicating gaze direction from an AUV, a critical aspect of nonverbal communication used in collaborative work. With readily available hardware as well as open-source and easily re-configurable programming, HREyes can be easily integrated into any AUV with the physical space for the devices and used to communicate effectively with divers in any underwater environment with appropriate visibility.


翻译:我们展示了HREYE的设计、开发和评估:生物模拟通信设备,使用光来传递信息,首次将AUV向人类看方向。首先,我们引入了两种使用HREY设备的信息显示:活跃的润滑油和视觉润滑油。活跃的润滑油通过动画来明确传递信息,而视觉润滑油通过模拟人类眼睛暗含地传达视向。我们展示了人类研究,将我们的系统与使用嵌入式数字显示器进行比较,该显示器通过显示文本将信息明确传递给潜水员。我们的结果表明,对受过训练的互动人员的积极润滑油有准确的认识,对未经训练的互动人员对这些润滑油的直观理解有限,对所有互动人员对视视视方向有相对准确的认识。活跃的润滑油识别结果比以前模拟人类眼睛的光基通信系统(尽管有不同的词组)更准确的识别。此外,我们在此工作中引入的表面润滑润滑油代表着第一个从AUV上向潜水器向潜水者传递方向的方法,这是不易受训练的互动互动者的一种关键方面,对于未经训练的互动透透透透的视觉,对于所有互动工作使用,任何可有效使用的任何软通信,任何可操作,任何可操作的硬能,可以轻易地用于任何可操作。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员