We study the strong existence and uniqueness of solutions within a Weyl chamber for a class of time-dependent particle systems driven by multiplicative noise. This class includes well-known processes in physics and mathematical finance. We propose a method to prove the existence of negative moments for the solutions. This result allows us to analyze two numerical schemes for approximating the solutions. The first scheme is a $\theta$-Euler--Maruyama scheme, which ensures that the approximated solution remains within the Weyl chamber. The second scheme is a truncated $\theta$-Euler--Maruyama scheme, which produces values in $\mathbb{R}^{d}$ instead of the Weyl chamber $\mathbb{W}$, offering improved computational efficiency.
翻译:暂无翻译