Unmanned aerial vehicle (UAV) swarm networks leverage resilient algorithms to restore connectivity from communication network split issues. However, existing graph learning-based approaches face over-aggregation and non-convergence problems caused by uneven and sparse topology under massive damage. In this paper, we propose a novel Multi-Level Damage-Aware (MLDA) Graph Learning algorithm to generate recovery solutions, explicitly utilizing information about destroyed nodes to guide the recovery process. The algorithm first employs a Multi-Branch Damage Attention (MBDA) module as a pre-processing step, focusing attention on the critical relationships between remaining nodes and destroyed nodes in the global topology. By expanding multi-hop neighbor receptive fields of nodes to those damaged areas, it effectively mitigating the initial sparsity and unevenness before graph learning commences. Second, a Dilated Graph Convolution Network (DGCN) is designed to perform convolution on the MBDA-processed bipartite graphs between remaining and destroyed nodes. The DGCN utilizes a specialized bipartite graph convolution operation to aggregate features and incorporates a residual-connected architecture to extend depth, directly generating the target locations for recovery. We theoretically proved the convergence of the proposed algorithm and the computational complexity is acceptable. Simulation results show that the proposed algorithm can guarantee the connectivity restoration with excellent scalability, while significantly expediting the recovery time and improving the topology uniformity after recovery.


翻译:无人机集群网络利用弹性算法从通信网络分裂问题中恢复连通性。然而,现有基于图学习的方法在大规模损伤下因拓扑结构不均匀且稀疏而面临过度聚合与不收敛问题。本文提出一种新颖的多层级损伤感知图学习算法,通过显式利用被毁节点信息来指导恢复过程,生成恢复方案。该算法首先采用多分支损伤注意力模块作为预处理步骤,将注意力集中于全局拓扑中剩余节点与被毁节点间的关键关联。通过将节点的多跳邻域感受野扩展至受损区域,该模块在图学习开始前有效缓解了初始稀疏性与不均匀性。其次,设计了一种扩张图卷积网络,用于在经MBDA处理后的剩余节点与被毁节点间的二分图上执行卷积运算。DGCN利用专门的二分图卷积操作聚合特征,并结合残差连接架构扩展网络深度,直接生成恢复所需的目标位置。我们从理论上证明了所提算法的收敛性,且其计算复杂度处于可接受范围。仿真结果表明,该算法在保证连通性恢复的同时具备优异的可扩展性,并能显著缩短恢复时间并提升恢复后的拓扑均匀性。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员