Curve-straight probabilistic engagement zones (CSPEZ) quantify the spatial regions an evader should avoid to reduce capture risk from a turn-rate-limited pursuer following a curve-straight path with uncertain parameters including position, heading, velocity, range, and maximum turn rate. This paper presents methods for generating evader trajectories that minimize capture risk under such uncertainty. We first derive an analytic solution for the deterministic curve-straight basic engagement zone (CSBEZ), then extend this formulation to a probabilistic framework using four uncertainty-propagation approaches: Monte Carlo sampling, linearization, quadratic approximation, and neural-network regression. We evaluate the accuracy and computational cost of each approximation method and demonstrate how CSPEZ constraints can be integrated into a trajectory-optimization algorithm to produce safe paths that explicitly account for pursuer uncertainty.


翻译:曲线-直线概率交战区域(CSPEZ)量化了规避者应避免的空间区域,以降低被转向速率受限追击者捕获的风险;该追击者遵循参数不确定的曲线-直线路径,不确定参数包括位置、航向、速度、射程和最大转向速率。本文提出了在此类不确定性下生成最小化捕获风险的规避者轨迹的方法。我们首先推导了确定性曲线-直线基本交战区域(CSBEZ)的解析解,随后通过四种不确定性传播方法——蒙特卡洛采样、线性化、二次近似和神经网络回归——将该公式扩展至概率框架。我们评估了每种近似方法的精度与计算成本,并展示了如何将CSPEZ约束集成至轨迹优化算法中,以生成明确考虑追击者不确定性的安全路径。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员