We build and analyze Balancing Domain Decomposition by Constraint (BDDC) and Finite Element Tearing and Interconnecting Dual Primal (FETI-DP) preconditioners for elliptic problems discretized by the virtual element method (VEM). We prove polylogarithmic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments confirm the theory.
翻译:我们构建并分析由约束(BDDC)和有限元素撕裂和连接(FETI-DP)构建并分析由虚拟元素法(VEM)分离的椭圆性问题的平衡域分解前提。 我们证明多元性条件序号界限,独立于子域数、网格大小和扩散系数的跳跃。 数字实验证实了理论。