We introduce a method for reconstructing an infinitesimal normalizing flow given only an infinitesimal change to a (possibly unnormalized) probability distribution. This reverses the conventional task of normalizing flows -- rather than being given samples from a unknown target distribution and learning a flow that approximates the distribution, we are given a perturbation to an initial distribution and aim to reconstruct a flow that would generate samples from the known perturbed distribution. While this is an underdetermined problem, we find that choosing the flow to be an integrable vector field yields a solution closely related to electrostatics, and a solution can be computed by the method of Green's functions. Unlike conventional normalizing flows, this flow can be represented in an entirely nonparametric manner. We validate this derivation on low-dimensional problems, and discuss potential applications to problems in quantum Monte Carlo and machine learning.
翻译:我们引入了一种方法来重建一个极小的正常流, 仅仅给一个( 可能无法正常化的) 概率分布带来极小的微小变化。 这逆转了正常流的常规任务, 而不是从未知的目标分布中获得样本, 并学习出一个接近分布的流, 我们被给最初的分布带来扰动, 目的是重建一个从已知的扰动分布中产生样本的流。 虽然这是一个未下定义的问题, 我们发现选择流为一个可耐受控的矢量场, 会产生一种与电静剂密切相关的解决方案, 一种解决方案可以通过格林的功能方法来计算。 与常规的正常流不同, 这种流可以完全无分辨性的方式代表这种流。 我们验证这一在低维问题上的衍生, 并讨论对量的蒙特卡洛 和 机器学习中的问题的潜在应用 。