Atmospheric powered descent guidance can be solved by successive convexification; however, its onboard application is impeded by the sharp increase in computation caused by nonlinear aerodynamic forces. The problem has to be converted into a sequence of convex subproblems instead of a single convex problem when aerodynamic forces are ignored. Besides, each subproblem is significantly more complicated, which increases computation. A fast real-time interior point method was presented to solve the correlated convex subproblems onboard in the work. The main contributions are as follows: Firstly, an algorithm was proposed to accelerate the solution of linear systems that cost most of the computation in each iterative step by exploiting the specific problem structure. Secondly, a warm-starting scheme was introduced to refine the initial value of a subproblem with a rough approximate solution of the former subproblem, which lessened the iterative steps required for each subproblem. The method proposed reduced the run time by a factor of 9 compared with the fastest publicly available solver tested in Monte Carlo simulations to evaluate the efficiency of solvers. Runtimes on the order of 0.6 s are achieved on a radiation-hardened flight processor, which demonstrated the potential of the real-time onboard application.


翻译:大气下层动力导导可以通过连续的凝固解解决;然而,由于非线性空气动力动力力量导致的计算急剧增加,其在船上的应用会阻碍其应用。问题必须转换成一个螺旋子子问题序列,而不是当空气动力力被忽略时出现单一的螺旋问题。此外,每个子问题都非常复杂,这增加了计算。提出了一种快速实时内点方法,以解决船上相关的螺旋子问题。主要贡献如下:首先,提出了一种算法,以加速线性系统的解决办法,通过利用特定的问题结构来加速计算每个迭代步骤的大部分计算费用。第二,采用了一种热启动办法,以完善子问题的初步价值,同时粗略地大致解决以前的子问题,从而减少每个子问题所需的迭接步骤。该方法提议将运行时间减少9倍,而蒙特卡洛模拟中测试的可迅速公开使用的解算器则用来评价解算器的效率。在0.6号上演示的辐射机上的实际飞行时间将调整为0.6号。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员