Deep learning techniques show success in detecting objects in medical images, but still suffer from false-positive predictions that may hinder accurate diagnosis. The estimated uncertainty of the neural network output has been used to flag incorrect predictions. We study the role played by features computed from neural network uncertainty estimates and shape-based features computed from binary predictions in reducing false positives in liver lesion detection by developing a classification-based post-processing step for different uncertainty estimation methods. We demonstrate an improvement in the lesion detection performance of the neural network (with respect to F1-score) for all uncertainty estimation methods on two datasets, comprising abdominal MR and CT images respectively. We show that features computed from neural network uncertainty estimates tend not to contribute much toward reducing false positives. Our results show that factors like class imbalance (true over false positive ratio) and shape-based features extracted from uncertainty maps play an important role in distinguishing false positive from true positive predictions
翻译:深深学习技术显示,在医学图像中检测对象方面取得成功,但仍受到可能妨碍准确诊断的假阳性预测的影响。神经网络输出的估计不确定性被用于显示不正确的预测。我们研究了通过神经网络不确定性估计和基于形状的特征所计算的特征所发挥的作用,这些特征是从神经网络不确定性估计和基于形状的特征所计算的,这些特征从二进预测中计算,它们通过为不同的不确定性估算方法制定基于分类的后处理步骤,减少肝脏损伤检测中的假阳性。我们表明,神经网络(F1-芯)对两个数据集(分别包括腹部MM和CT图像)的所有不确定性估计方法的损害检测性能有所改善。我们表明,从神经网络不确定性估计中计算出的特征不会对减少假阳性做出很大贡献。我们的结果表明,诸如阶级失衡(与假正比率相比)和从不确定性图中提取的基于形状特征等因素在区分真实正面预测的假正值方面发挥着重要作用。