Autism Spectrum Disorder (ASD) is a severe neuropsychiatric disorder that affects intellectual development, social behavior, and facial features, and the number of cases is still significantly increasing. Due to the variety of symptoms ASD displays, the diagnosis process remains challenging, with numerous misdiagnoses as well as lengthy and expensive diagnoses. Fortunately, if ASD is diagnosed and treated early, then the patient will have a much higher chance of developing normally. For an ASD diagnosis, machine learning algorithms can analyze both social behavior and facial features accurately and efficiently, providing an ASD diagnosis in a drastically shorter amount of time than through current clinical diagnosis processes. Therefore, we propose to develop a hybrid architecture fully utilizing both social behavior and facial feature data to improve the accuracy of diagnosing ASD. We first developed a Linear Support Vector Machine for the social behavior based module, which analyzes Autism Diagnostic Observation Schedule (ADOS) social behavior data. For the facial feature based module, a DenseNet model was utilized to analyze facial feature image data. Finally, we implemented our hybrid model by incorporating different features of the Support Vector Machine and the DenseNet into one model. Our results show that the highest accuracy of 87% for ASD diagnosis has been achieved by our proposed hybrid model. The pros and cons of each module will be discussed in this paper.


翻译:自闭症谱障碍(ASD)是一种严重的神经精神病障碍,它影响智力发展、社会行为和面部特征,病例数量仍然在大幅增加。由于症状的ASD显示多种多样,诊断过程仍然具有挑战性,许多诊断错误,以及长期和昂贵的诊断。幸运的是,如果ASSD被诊断和早期治疗,病人的正常发展机会会更高。对于ASD诊断,机器学习算法可以准确和有效地分析社会行为和面部特征,提供自闭症诊断,比目前的临床诊断过程要短得多得多的时间。因此,我们提议开发一个混合结构,充分利用社会行为和面部特征数据来提高对ASDSD的准确度。我们首先为基于社会行为的模块开发了一个线性支持矢量控制器,该模块分析自闭症诊断仪观测表(ADOS)的社会行为数据。对于基于面部特征的模块,将使用DenseNet模型来分析面部特征图像数据。最后,我们通过将不同的社会行为和面部位特征数据数据数据数据数据模型应用了我们混合模型,把社会行为和面部位模型中的每个模型都包含了我们已实现的DNA诊断结果。

0
下载
关闭预览

相关内容

抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
5+阅读 · 2020年8月28日
VIP会员
相关VIP内容
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员