In this thesis, we explore streaming algorithms for approximating constraint satisfaction problems (CSPs). The setup is roughly the following: A computer has limited memory space, sees a long "stream" of local constraints on a set of variables, and tries to estimate how many of the constraints may be simultaneously satisfied. The past ten years have seen a number of works in this area, and this thesis includes both expository material and novel contributions. Throughout, we emphasize connections to the broader theories of CSPs, approximability, and streaming models, and highlight interesting open problems. The first part of our thesis is expository: We present aspects of previous works that completely characterize the approximability of specific CSPs like Max-Cut and Max-Dicut with $\sqrt{n}$-space streaming algorithm (on $n$-variable instances), while characterizing the approximability of all CSPs in $\sqrt n$ space in the special case of "composable" (i.e., sketching) algorithms, and of a particular subclass of CSPs with linear-space streaming algorithms. In the second part of the thesis, we present two of our own joint works. We begin with a work with Madhu Sudan and Santhoshini Velusamy in which we prove linear-space streaming approximation-resistance for all ordering CSPs (OCSPs), which are "CSP-like" problems maximizing over sets of permutations. Next, we present joint work with Joanna Boyland, Michael Hwang, Tarun Prasad, and Santhoshini Velusamy in which we investigate the $\sqrt n$-space streaming approximability of symmetric Boolean CSPs with negations. We give explicit $\sqrt n$-space sketching approximability ratios for several families of CSPs, including Max-$k$AND; develop simpler optimal sketching approximation algorithms for threshold predicates; and show that previous lower bounds fail to characterize the $\sqrt n$-space streaming approximability of Max-$3$AND.


翻译:在本论文中,我们探讨用于近似约束满足问题(CSPs)的流算法。具体来说,计算机有限的内存空间,能够观察到对一组变量的长期“流”局部约束,并尝试估计可以同时满足的约束数量。过去的十年中,这个领域中已经有了很多研究,并且本论文包含了新的贡献和阐述性材料。在整个过程中,我们强调与CSP,近似性和流模型的更广泛理论之间的联系,并强调有趣的开放问题。本文的第一部分是阐述性的:我们提出了之前的研究成果方面的内容,它完全描述了特定CSPs的近似性,如具有 $\sqrt{n}$ 空间流算法的Max-Cut和Max-Dicut(在 $n$ 变量实例上),同时在可组合(如草图)算法以及具有线性空间流算法的特定CSP子类的情况下,有效描述了所有CSPs的近似性。在论文的第二部分,我们展示了我们自己的两个共同工作。我们开始进行Madhu Sudan和Santhoshini Velusamy的合作,在其中我们证明了所有排序CSPs(OCSPs)的线性空间流近似阻力,这些问题最大化排列集。接下来,我们与Joanna Boyland,Michael Hwang,Tarun Prasad和Santhoshini Velusamy进行合作,研究了带否定的对称布尔CSPs的 $\sqrt{n}$ -space流近似性。我们为多个CSPs系列提供了明确的 $\sqrt{n}$ -space草图近似性比率,包括Max-$k$AND;为阈值谓词开发了更简单的最优草图近似算法;并且表明以前的下界未能描述Max-$3$AND的 $\sqrt{n}$-space流近似性。

0
下载
关闭预览

相关内容

【2022新书】图算法指南,A Guide to Graph Algorithms, 350页pdf
专知会员服务
81+阅读 · 2022年3月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
51+阅读 · 2020年12月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
16+阅读 · 2020年5月20日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员