Medical imaging analysis plays a critical role in the diagnosis and treatment of various medical conditions. This paper focuses on chest X-ray images and their corresponding radiological reports. It presents a new model that learns a joint X-ray image & report representation. The model is based on a novel alignment scheme between the visual data and the text, which takes into account both local and global information. Furthermore, the model integrates domain-specific information of two types -- lateral images and the consistent visual structure of chest images. Our representation is shown to benefit three types of retrieval tasks: text-image retrieval, class-based retrieval, and phrase-grounding.
翻译:医学成像分析在各种医疗情况的诊断和治疗中发挥着至关重要的作用。本文关注胸部X光图像及其相应的放射学报告。提出了一种新模型,学习联合X光图像和报告表示。该模型基于视觉数据和文本之间的新型对准方案,考虑了局部和全局信息。此外,该模型集成了两种类型的领域专门信息 - 侧面图像和胸部图像的一致视觉结构。我们的表示有助于三种检索任务:文本-图像检索、基于类别的检索和短语定位。