We propose a fast scheme for approximating the Mittag-Leffler function by an efficient sum-of-exponentials (SOE), and apply the scheme to the viscoelastic model of wave propagation with mixed finite element methods for the spatial discretization and the Newmark-beta scheme for the second-order temporal derivative. Compared with traditional L1 scheme for fractional derivative, our fast scheme reduces the memory complexity from $\mathcal O(N_sN) $ to $\mathcal O(N_sN_{exp})$ and the computation complexity from $\mathcal O(N_sN^2)$ to $\mathcal O(N_sN_{exp}N)$, where $N$ denotes the total number of temporal grid points, $N_{exp}$ is the number of exponentials in SOE, and $N_s$ represents the complexity of memory and computation related to the spatial discretization. Numerical experiments are provided to verify the theoretical results.
翻译:暂无翻译