Mobile soft robots offer compelling applications in fields ranging from urban search and rescue to planetary exploration. A critical challenge of soft robotic control is that the nonlinear dynamics imposed by soft materials often result in complex behaviors that are counterintuitive and hard to model or predict. As a consequence, most behaviors for mobile soft robots are discovered through empirical trial and error and hand-tuning. A second challenge is that soft materials are difficult to simulate with high fidelity -- leading to a significant reality gap when trying to discover or optimize new behaviors. In this work we employ a Quality Diversity Algorithm running model-free on a physical soft tensegrity robot that autonomously generates a behavioral repertoire with no a priori knowledge of the robot dynamics, and minimal human intervention. The resulting behavior repertoire displays a diversity of unique locomotive gaits useful for a variety of tasks. These results help provide a road map for increasing the behavioral capabilities of mobile soft robots through real-world automation.
翻译:移动软机器人在从城市搜索和救援到行星探索的各个领域提供了令人信服的应用。软机器人控制的一个关键挑战是软材料所强加的非线性动态往往导致反直觉和难以模型或预测的复杂行为。因此,移动软机器人的大多数行为都是通过实验试验和错误以及手调而发现的。第二个挑战是软材料很难以高度忠诚的方式模拟 -- -- 在试图发现或优化新行为时,导致巨大的现实差距。在这项工作中,我们使用一个质量多样性阿尔戈里希姆在物理软紧张性机器人上运行模型,该机器人自主地生成一个没有机器人动态预知和最低限度人类干预的行为组合。由此产生的行为重组展示了多种独特的机动电磁键,用于各种任务。这些结果有助于提供路线图,通过现实世界自动化提高移动软机器人的行为能力。