In order to withstand the ever-increasing invasion of privacy by CCTV cameras and technologies, on par CCTV-aware solutions must exist that provide privacy, safety, and cybersecurity features. We argue that a first important step towards such CCTV-aware solutions must be a mapping system (e.g., Google Maps, OpenStreetMap) that provides both privacy and safety routing and navigation options. However, this in turn requires that the mapping system contains updated information on CCTV cameras' exact geo-location, coverage area, and possibly other meta-data (e.g., resolution, facial recognition features, operator). Such information is however missing from current mapping systems, and there are several ways to fix this. One solution is to perform CCTV camera detection on geo-location tagged images, e.g., street view imagery on various platforms, user images publicly posted in image sharing platforms such as Flickr. Unfortunately, to the best of our knowledge, there are no computer vision models for CCTV camera object detection as well as no mapping system that supports privacy and safety routing options. To close these gaps, with this paper we introduce CCTVCV -- the first and only computer vision MS COCO-compatible models that are able to accurately detect CCTV and video surveillance cameras in images and video frames. To this end, our best detectors were built using 8387 images that were manually reviewed and annotated to contain 10419 CCTV camera instances, and achieve an accuracy of up to 98.7%. Moreover, we build and evaluate multiple models, present a comprehensive comparison of their performance, and outline core challenges associated with such research.


翻译:为了抵御闭路电视摄像和技术日益侵犯隐私的现象,闭路电视系统必须存在能够提供隐私、安全和网络安全特点的闭路电视系统。我们认为,实现闭路电视解决方案的第一步必须是映像系统(例如谷歌地图、OpenStreetMap),该系统既提供隐私和安全路线选择,又提供导航选项。然而,这反过来要求制图系统包含闭路电视相机准确地理定位的最新信息,覆盖区域,并可能包含其他元数据(例如,分辨率、面部识别特征、操作员等)。然而,目前绘图系统缺少这类信息,但有几种方法可以解决这个问题。一个办法是在地理定位标记图像上进行闭路电视摄像头探测,例如:Google Maps、Opt StreetMap),提供隐私和安全路线选择;然而不幸的是,根据我们的知识,没有用于闭路电视摄像机检测的计算机图像模型,也没有支持隐私和安全路径选择的绘图系统。为了缩小这些差距,我们用这张纸上CLV的比较,有几种方法。一个办法是在地理定位图像中进行闭路电视测试的第一次和83年的图像,用来精确地测量。

0
下载
关闭预览

相关内容

【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
已删除
将门创投
9+阅读 · 2018年12月19日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Arxiv
1+阅读 · 2021年8月21日
Arxiv
12+阅读 · 2021年6月21日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
VIP会员
相关VIP内容
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
相关资讯
已删除
将门创投
9+阅读 · 2018年12月19日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员