A graph is called 1-plane if it has an embedding in the plane where each edge is crossed at most once by another edge. A crossing of a 1-plane graph is called an $\times$-crossing if the endpoints of the crossing pair of edges induce a matching. In this paper, we show how to compute the vertex connectivity of a 1-plane graph $G$ without $\times$-crossings in linear time. To do so, we show that for any two vertices $u,v$ in a minimum separating set $S$, the distance between $u$ and $v$ in an auxiliary graph $\Lambda(G)$ (obtained by planarizing $G$ and then inserting into each face a new vertex adjacent to all vertices of the face) is small. It hence suffices to search for a minimum separating set in various subgraphs $\Lambda_i$ of $\Lambda(G)$ with small diameter. Since $\Lambda(G)$ is planar, the subgraphs $\Lambda_i$ have small treewidth. Each minimum separating set $S$ then gives rise to a partition of $\Lambda_i$ into three vertex sets with special properties; such a partition can be found via Courcelle's theorem in linear time.
翻译:如果在平面上嵌入每个边缘最多被另一边缘越过一次,则图形为1平面。 1平面图的交叉点称为$_times_crossing $france。在本文中,我们展示如何计算1平面图的顶点连接率,而没有美元_xymes $G$。为了这样做,我们显示,对于任何两个顶点($u),v$,以最低分数设定为$S$。在1平面的平面图中,美元和美元之间的距离被称为$\times_rv$_rv$_rv$$$$_r=Lambda(G),在每张平面上插入一张新的顶点。因此,只要在各种子图中查找一个最小的分数($\Lambda_i$_i$_g_G$_lendalice$_s developlea_ developalal_s a smallLab_ developal_ developal a remainal_ set a fn_ sn_ snalmatiumleambab_ leab_ leab_ leaxnalmamamamamamas met_ the fn_ set_ set_ snalmas fn_ laxn__ lexnal_ laxn_leab_ leab_b_ leab_ leab_ leglegal_ legal_ leg_ leg_ la_ leg_ la_ leg_ leg_ la_ leab_ la_ la_ la_ semasmasmasmasmasma_ leab_ semasmas fetalsma_ semasmasmasmasmas_ semas fet_ se_ leab_ sema_ lea_ se_ lea_ semasmasmasma_ se_ lea_ lea_ la_ lea_ lea_ le_