The sensitivity of imaging spectroscopy to haemoglobin derivatives makes it a promising tool for detecting blood. However, due to complexity and high dimensionality of hyperspectral images, the development of hyperspectral blood detection algorithms is challenging. To facilitate their development, we present a new hyperspectral blood detection dataset. This dataset, published in accordance to open access mandate, consist of multiple detection scenarios with varying levels of complexity. It allows to test the performance of Machine Learning methods in relation to different acquisition environments, types of background, age of blood and presence of other blood-like substances. We explored the dataset with blood detection experiments. We used hyperspectral target detection algorithm based on the well-known Matched Filter detector. Our results and their discussion highlight the challenges of blood detection in hyperspectral data and form a reference for further works.
翻译:血红蛋白衍生物的成像光谱分析灵敏度使它成为探血的一个很有希望的工具。然而,由于超光谱图像的复杂性和高度维度,超光谱血液检测算法的发展具有挑战性。为了促进它们的发展,我们提出了一个新的超光谱血液检测数据集。根据开放访问授权,该数据集由复杂程度不一的多种检测情景组成,可以测试机器学习方法在不同获取环境、背景类型、血液年龄和其他类似血液物质的存在方面的性能。我们用血液检测实验对数据集进行了探索。我们使用了以著名的匹配过滤器探测器为基础的超光谱目标检测算法。我们的结果和讨论凸显了在超光谱数据中的血液检测挑战,并为进一步的工作提供了参考。