With the rapid growth of software, using third-party libraries (TPLs) has become increasingly popular. The prosperity of the library usage has provided the software engineers with handful of methods to facilitate and boost the program development. Unfortunately, it also poses great challenges as it becomes much more difficult to manage the large volume of libraries. Researches and studies have been proposed to detect and understand the TPLs in the software. However, most existing approaches rely on syntactic features, which are not robust when these features are changed or deliberately hidden by the adversarial parties. Moreover, these approaches typically model each of the imported libraries as a whole, therefore, cannot be applied to scenarios where the host software only partially uses the library code segments. To detect both fully and partially imported TPLs at the semantic level, we propose ModX, a framework that leverages novel program modularization techniques to decompose the program into finegrained functionality-based modules. By extracting both syntactic and semantic features, it measures the distance between modules to detect similar library module reuse in the program. Experimental results show that ModX outperforms other modularization tools by distinguishing more coherent program modules with 353% higher module quality scores and beats other TPL detection tools with on average 17% better in precision and 8% better in recall.


翻译:随着软件的迅速增长,使用第三方图书馆(TPLs)的软件的迅速增长越来越受欢迎。图书馆的繁荣使用为软件工程师提供了便利和推动程序开发的少数方法。不幸的是,由于管理大量图书馆变得更加困难,这也带来了巨大的挑战。提议进行一些研究和研究,以探测和理解软件中的TPL。然而,大多数现有方法都依靠合成特征,这些特征在对抗方改变或故意隐藏这些特征时并不牢固。此外,这些方法通常每个进口的图书馆都采用模型,因此,无法应用到东道软件只部分使用图书馆代码部分的情景中。为了在语义层次一级探测全部和部分进口的TPL,我们建议采用MedX,这个框架利用新式程序模块化技术将程序分解成精细的基于功能的模块。通过提取合成和语义特征,它测量模块之间的距离,以探测程序内类似的图书馆模块再利用。实验结果显示,在高级模型中,Mox超越了其他模块化的17%质量工具,比其他模块化程度更高,比其他模块化工具更一致。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月7日
Arxiv
0+阅读 · 2022年6月6日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员