We release a new codebase version of the BEVDet, dubbed branch dev2.0. With dev2.0, we propose BEVPoolv2 upgrade the view transformation process from the perspective of engineering optimization, making it free from a huge burden in both calculation and storage aspects. It achieves this by omitting the calculation and preprocessing of the large frustum feature. As a result, it can be processed within 0.82 ms even with a large input resolution of 640x1600, which is 15.1 times the previous fastest implementation. Besides, it is also less cache consumptive when compared with the previous implementation, naturally as it no longer needs to store the large frustum feature. Last but not least, this also makes the deployment to the other backend handy. We offer an example of deployment to the TensorRT backend in branch dev2.0 and show how fast the BEVDet paradigm can be processed on it. Other than BEVPoolv2, we also select and integrate some substantial progress that was proposed in the past year. As an example configuration, BEVDet4D-R50-Depth-CBGS scores 52.3 NDS on the NuScenes validation set and can be processed at a speed of 16.4 FPS with the PyTorch backend. The code has been released to facilitate the study on https://github.com/HuangJunJie2017/BEVDet/tree/dev2.0.
翻译:我们推出一个新的 BEVDet 代码数据库版本, 称为 Dev2. 0 分支 。 有了 dev2. 0, 我们提议从工程优化的角度提升 BEVpoolv2 视图转换进程, 使其在计算和存储方面没有巨大的负担。 它通过省略大块块状特征的计算和预处理来实现这一点。 因此, 它可以在0.82米内处理, 即使输入解析为 640x1600, 也就是前一个执行速度的15.1倍。 此外, 与前一个实施相比, 它也会减少缓存的缓存性, 因为它自然不再需要存储大块状状状特征 。 最后但同样重要的是, 这也可以让它成为另一个后端的缩放工具。 我们提供了一个在Dev2. 0 分支的 TensorRT 后端部署的示例, 并展示它能够快速处理 。 除了 BEVPO202, 我们还选择并整合上一年提出的一些实质性进展。 作为示例配置, BEVDODDD- R50-DFDS 的验证/ CRDRDRDRDS 。 在 NEVDRVDR4 上, 在 FDRV. 050- DSDRDRDRDRDSDSDRDS 的 SDRDRDRDRDSDRDRDRDRDS 上可以 上, 可以 。