Polynomial eigenvalue problems (PEPs) arise in a variety of science and engineering applications, and many breakthroughs in the development of classical algorithms to solve PEPs have been made in the past decades. Here we attempt to solve PEPs in a quantum computer. Firstly, for generalized eigenvalue problems (GEPs) $A\x = \lambda B\x$ with $A,B$ symmetric, and $B$ positive definite, we give a quantum algorithm based on block-encoding and quantum phase estimation. In a more general case when $B$ is invertible, $B^{-1}A$ is diagonalizable and all the eigenvalues are real, we propose a quantum algorithm based on the Fourier spectral method to solve ordinary differential equations (ODEs). The inputs of our algorithms can be any desired states, and the outputs are superpositions of the eigenpairs. The complexities are polylog in the matrix size and linear in the precision. The dependence on precision is optimal. Secondly, we show that when $B$ is singular, any quantum algorithm uses at least $\Omega(\sqrt{n})$ queries to compute the eigenvalues, where $n$ is the matrix size. Thirdly, based on the linearization method and the connection between PEPs and higher-order ODEs, we provide two quantum algorithms to solve PEPs by extending the quantum algorithm for GEPs. We also give detailed complexity analysis of the algorithm for two special types of quadratic eigenvalue problems that are important in practice. Finally, under an extra assumption, we propose a quantum algorithm to solve PEPs when the eigenvalues are complex.
翻译:在各种科学和工程应用中出现了多元体外值问题(PEP),在过去几十年里,在开发解决PEP的古典算法方面取得了许多突破。在这里,我们试图在量子计算机中解决PEP。首先,对于通用的egen值问题(GEPs),$A=x=\lambda B=x$A,美元对称和美元正数,我们给出了一个基于块值编码和量级估计的量级算法。在一般情况下,当美元是不可逆的, $B=1}A是可变的, 所有egen值都是真实的。首先,我们提出一个基于四重光谱方法解决普通差异方程式(ODODs)的量级算算算算算法。我们算法的投入可以是任何想要的状态,而产出是eigenpairs的超位值。在基质值的基数级算法中,其复杂度是精度(IFIEPO的量度和线性。对于精度的直值分析是最佳的值。第二,我们对精度,我们最后显示的值是美元的值。当 $OIAL的直值,我们使用的直值的直值。当我们使用的直值的直值是一个直值,我们使用的直等值的直值的直值,我们使用的直数值的直值,我们使用的直值,我们使用的直值。