A poset $I=(\{1,\ldots, n\}, \leq_I)$ is called non-negative if the symmetric Gram matrix $G_I:=\frac{1}{2}(C_I + C_I^{tr})\in\mathbb{M}_n(\mathbb{R})$ is positive semi-definite, where $C_I\in\mathbb{M}_n(\mathbb{Z})$ is the $(0,1)$-matrix encoding the relation $\leq_I$. Every such a connected poset $I$, up to the $\mathbb{Z}$-congruence of the $G_I$ matrix, is determined by a unique simply-laced Dynkin diagram $\mathrm{Dyn}_I\in\{\mathbb{A}_m, \mathbb{D}_m,\mathbb{E}_6,\mathbb{E}_7,\mathbb{E}_8\}$. We show that $\mathrm{Dyn}_I=\mathbb{A}_n$ implies that the matrix $G_I$ is of rank $n$ or $n-1$. Moreover, we depict explicit shapes of Hasse digraphs $\mathcal{H}(I)$ of all such posets~$I$ and devise formulae for their number.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
135+阅读 · 2022年9月17日
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
42+阅读 · 2022年2月17日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
专知会员服务
21+阅读 · 2021年7月31日
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
32+阅读 · 2021年3月7日
一个1024的MLP,击败了几乎所有的GNN模型
图与推荐
0+阅读 · 2022年8月31日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月15日
VIP会员
相关资讯
一个1024的MLP,击败了几乎所有的GNN模型
图与推荐
0+阅读 · 2022年8月31日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员