Detecting navigable space is a fundamental capability for mobile robots navigating in unknown or unmapped environments. In this work, we treat visual navigable space segmentation as a scene decomposition problem and propose Polyline Segmentation Variational autoencoder Network (PSV-Net), a representation learning-based framework for learning the navigable space segmentation in a self-supervised manner. Current segmentation techniques heavily rely on fully-supervised learning strategies which demand a large amount of pixel-level annotated images. In this work, we propose a framework leveraging a Variational AutoEncoder (VAE) and an AutoEncoder (AE) to learn a polyline representation that compactly outlines the desired navigable space boundary. Through extensive experiments, we validate that the proposed PSV-Net can learn the visual navigable space with no or few labels, producing an accuracy comparable to fully-supervised state-of-the-art methods that use all available labels. In addition, we show that integrating the proposed navigable space segmentation model with a visual planner can achieve efficient mapless navigation in real environments.
翻译:检测导航空间是移动机器人在未知或未测绘的环境中航行的基本能力。在这项工作中,我们将视觉导航空间部分作为场面分解问题处理,并提出多线分解自动编码网络(PSV-Net),这是一个代表式学习框架,用于以自我监督的方式学习可导航空间部分。当前分解技术严重依赖完全监督下的学习战略,需要大量的像素级附加说明图像。在这项工作中,我们提出了一个框架,利用挥发式自动 Encoder(VAE)和自动 Encoder(AE)来学习一个能紧凑地勾画所期望的导航空间边界的多线代表。通过广泛的实验,我们验证了拟议的PSV-Net能够以零或少几个标签的方式学习视觉导航空间,产生与完全超强的状态技术方法相近的精确度,使用所有可用的标签。此外,我们还表明,将拟议的导航空间部分空间部分模型与视觉规划器整合,可以在现实环境中实现高效的无地图导航。</s>